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An experimental study of the instability of the 
laminar Ekman boundary layer 

By ALAN J. FALLER 
Woods Hole Oceanographic Institution, Woods Hole, Mass. 

(Received 14 May 1962 and in revised form 3 October 1962) 

This study concerns the stability of the steady laminar boundary-layer flow 
of a homogeneous fluid which occurs in a rotating system when the relative flow 
is slow compared to the basic speed of rotation. Such L flow is called an Ekman 
boundary-layer flow after V. W. Ekman who considered the theory of such flows 
with application to the wind-induced drift of the surface waters of the ocean. 

Ekman flow was produced in a large cylindrical rotating tank by withdrawing 
water from the centre and introducing it at the rim. This created a steady-state 
symmetrical vortex in which the flow from the rim to the centre took place entirely 
in the shallow viscous boundary layer at the bottom. This boundary-layer flow 
became unstable above the critical Reynolds number Re, = vD/v = 125 & 5 ,  
where v is the tangential speed of flow, D = (v/Q)* is the characteristic depth of 
the boundary layer, v is the kinematic viscosity, and Q is the basic speed of rota- 
tion. The initial instability was similar to that which occurs in the boundary 
layer on a rotating disk, having a banded form with a characteristic angle to the 
basic flow and with the band spacing proportional to the depth of the boundary 
layer. 

1. Introduction 
Stability criteria for laminar viscous flows have been a major goal of studies in 

theoretical fluid dynamics for many years. But because of inherent complexities 
involved in the solution of the hydrodynamic perturbation equations very few 
exact solutions for stability criteria have been obtained (for an excellent survey 
see Lin 1955). These have been confined for the most part to physical situations 
which may be described as having two-dimensional flow, that is, examples in 
which the velocity vector and the shear vector at every point lie in the same plane. 
However, many regimes in which the question of stability is an important one are 
not two-dimensional, but the additional complexities associated with the angular 
variation of the flow have rendered the exact mathematical analysis intractable. 

An example which has received considerable attention is the flow induced by 
a rotating circular disk in still air. I n  an experimental study Gregory, Stuart 
& Walker (1955) (hereafter referred to as GSW) confirmed the velocity profiles 
deduced theoretically and determined a critical Reynolds number for the onset 
of instability. Furthermore, Stuart’s mathematical analysis provided physical 
insight into the nature of the instability and successfully explained certain 
features of the evolved flow. The instability which was observed had the form of 
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283 cm 

Clrcular plastic 

FIGURE 1. Schematic diagram of the rotating tank and mechanism 

FIGURE 2.  Photograph of the apparatus in operation without the central core. 
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FIGURE 3. The rotating tank as seen from abovc with an example of the pattern of in- 
stability of the Ekman boundary layer. Thr major spiral arms with the crossing angle 
of approximately 45" are caused by the sclcctjve introduction of dye in 4 sectors of the 
tank. They demonstrate the inflow at thr bottom of the boundary layer. The spiral 
bands formed by the instability of the laminar boundary layer begin in this case at, 
approximately r = 0.60. 
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Plate 3 
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stationary roll vortices with a spacing related to the depth of the boundary layer 
and oriented at a small characteristic angle with respect to the tangential direc- 
tion on the disk. Gregory & Walker (1960) extended the study of instability to a 
rotating disk with suction. 

An important feature of those particular three-dimensional circulations from 
the viewpoint of theoretical fluid dynamics is that the basic flow has been deter- 
mined from exact numerical solutions to the Navier-Stokes equations of motion. 
These have been obtained by von K a r m h  (1921) and Cochran (1934) for the 
rotating disk and for the disk with suction by Stuart (1954) and Fettis (1955). 
Mathematical proof of the existence of the flow described by Fettis has been 
given by Howard (1961) for a certain range of the suction parameter. 

The experimental study reported here is concerned with the stability of the 
laminar Ekman (1905) boundary layer which has an exact anaZyticaZ solution. 
Laminar Ekman flow was obtained by the generation of a vortex in a large rota- 
ting tank, the vortex being produced by withdrawing water from the centre of the 
tank and by re-supplying it at the rim (see figures 1 and 2, plate 1). After 
transient motions have subsided the flow consists essentially of a tangential circu- 
lation throughout the main body of the fluid whose speed relative to the rotating 
apparatus is slow and inversely proportional to the radius, and a boundary-layer 
flow near the bottom. This latter flow accomplishes the entire radial transport. 

Boundary-layer instability of the same general nature as that reported by 
GSW has been found (see figure 3, plate 2 and figure 4, plates 3, 4) but with the 
following major differences in the experimental results: ( 1) a significantly different 
value of the critical Reynolds number was found, and (2) the observed perturba- 
tions were of a different wavelength and generally were not stationary. 

Other papers have been published recently on the theoretical possibility (Stern 
1960) and on the experimental manifestations (Arons, Ingersol & Green 1961) 
of instability of laminar Ekman flow, but these papers were concerned with forms 
of instability of a basically different nature from that which is discussed here. 
For example, the perturbation described in the latter paper extended through the 
entire depth of fluid and occurred at relative speeds of flow lower than the 
critical values found here by more than an order of magnitude. Specifically, 
this work describes an instability which is entirely a boundary-layer phenomenon, 
whereas the above papers were concerned with examples in which the instability 
involved the interaction of the boundary-layer flow with the interior circulation. 

This work was initiated as part of a study of certain boundary-layer flows 

EXPLANATION OF PLATES 3 AND 4 

FIGURE 4. Examples of patterns of dye in the boundary layer caused by the instability. 

R (sec-l) S (cm3 sec-l) 
Plate 3 (a) 7. iv. 60, VII 0.390 840 

(b) 14. iv. 60, V, 0.094 650 

Plate 4 (c) 7. iv. 60, I 0.027 568 
(d )  7. iv. 60, I X  0.393 588 

Note the increased spacing of the bands from (a)  to (c) because of the decrease of R, 
and the decrease of the radius of instability because of the decrease of S. 

36 Fluid Moch. 15 



562 Alan J .  Faller 

in rotating systems with intended application to experimental model studies 
of geophysical fluid circulations. Boundary-layer velocity profiles which approxi- 
mate Ekman flow occur in the atmospheric boundary layer to a height of peshaps 
1000 m, and in the wind-driven surface layer of the ocean to a depth of the order 
of 50 m. However, possible analogies with geophysical flows are not considered 
in detail here because the oceanic and atmospheric examples always involve 
turbulence due to rough boundary surfaces, thermal instability, or complicated 
time and space variations of the energy sources. In  contrast these experiments 
are concerned with the steady laminar flow of a uniform fluid. 

Some mention should be made of other relevant studies of boundary-layer 
flows. Stewartson (1953) found an expansion solution (by a method similar to 
that developed here) for a disk rotating at a small differential speed with respect 
to a fluid in uniform rotation at infinity. Haurwitz (1935) previously had found 
an analytical solution for arbitrary values of the angular rotation of the fluid 
and that of the disk, although he had to neglect vertical motion due to conver- 
gence in the boundary layer. More recently, Rogers & Lance (1960) have obtained 
complete numerical solutions over a wide range of conditions with the fluid a t  
infinity in solid rotation or at  rest. The flow considered here differs from those 
discussed above in that mass continuity in this case specifies no net convergence in 
the boundary layer. The solutions of Rogers & Lance or of Stewartson are not 
directly applicable because of the different variation of the basic flow with radius 
and the consequent flux of mass into or out of the boundary layer when the fluid 
at infinity is in solid rotation. 

2. Experimental apparatus and observational techniques 
Figure 1 (plate 1)  is a schematic diagram and figure 2 (plate 1) is a photograph 

of the rotating tank which was built by von Arx ( 1 % q  for studies of the wind- 
driven ocean circulation. Thesupport anddriving mechanism, by flotation and im- 
peller blades, assured smooth rotation and stable speeds, and the original design 
was alteredfor this study only by installation of a central shaftwith a flexible bear- 
ing to prevent lateral oscillations of the tank at  the higher rotation speeds. The 
inside floor of the rotating tank was smoothed and levelled with a poured thermo- 
setting polyester resin. The pumping system withdrew water from the centre of 
the tank and distributed i t  uniformly around the rim by means of 36 equally 
spaced stationary nozzles. The rotation of the tank served to smooth the distribu- 
tion of water, and a filter of rubberized-hair packing material and a set of baaes 
brought the water to the basic rotation speed before it flowed into the boundary 
layer through the 2 cm high gap a t  the bottom of the outer rim. In  the first set 
of experiments a central core with a rim of radius 54 om and with a 2 cm gap a t  
the bottom was used, and part ofthe data (up to 29. iii. 60, VIII  in table 1 )  was ob- 
tained with this inner rim. There was no noticeable effect of thisvertical boundary 
beyond a radius of 60cm but it was removed for later experiments to permit 
observations at smaller radii. 

The basic controlled variables of the experiments were the flow rate 8, deter- 
mined from a calibrated water meter read at 1 min intervals; the basic rotation 
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564 Alan J .  Faller 

rate of the tank, Q; the kinematic viscosity, v, determined from the temperature 
and the tabulations of Dorsey (1940); and the total depth of fluid, H.  The ranges 
of these variables may be seen in table 1, and the values of each independent 
variable are believed to have departed from the true values with a standard 
deviation of error not exceeding 1 yo. The primary dependent variables con- 
sidered in this study are: the tangential speed of flow v as a function of radius r ,  
the observed critical radii of transition from laminar to wave motions r,, the 
wave lengths 1, and the angles a of the observed unstable waves after the transition 
from laminar flow, and the relative speeds of motion of the bands. 

The tangential flow was recorded by a sequence of photographs which showed 
the positions of tracers floating near the surface of the water. Small light bulbs 
24 cm long were used as floating tracers since they were well imbedded into the 
fluid and moved quite independently of wind stress or surface films. A reference 
grid was painted onto the bottom of the tank and the necessary corrections for 
the positions of the tracers including parallax and refraction at the sloping 
air-water interface have been applied. The character of the circulation in the 
boundary layer was made evident by the introduction of crystals of potassium- 
permanganate dye near the outer rim (see figure 3, plate 2). Streaks from the dye 
crystals extended inward in nearly-equiangular spirals with angles very close t o  
the 45 degrees predicted by the boundary-layer theory of the flow immediately 
above the boundary.? The spiral bands of dye (and alternate clear bands) which 
formed as a result of the instability of the boundary-layer flow can be seen in 
figure 3 (plate 3 )  and figure 4 (plates 3,4).  These bands are interpreted as regions 
in the bottom of the boundary layer where the thin layer of dyed fluid became 
deeper (or shallower) because of the slower (or faster) speeds of flow associated 
with the superposition of unstable perturbations upon the basic boundary-layer 
flow. 

3. Theory of the basic circulation 
A simplified analysis of the circulation to be expected for very slow flow was 

presented in an earlier paper (Faller 1960). However, in this study it was neces- 
sary to use somewhat higher speeds of flow to achieve instability, and conse- 
quently neglect of the non-linear inertial terms in the equations of motion is not 
justified. To take into account the non-linearities an iteration solution based upon 
an expansion in powers of a Rossby number was obtained, the Rossby number 
being a small parameter which measures the ratio of characteristic non-linear 
terms to the Coriolis acceleration. With the following transformations the 
Navier-Stokes equations may be rewritten in a suitable non-dimensional form : 

u = cU/r, v = cV/r, w = DcW/R, c = S/n-RD, 
zr = zD, 

P, = pz/2QcD, p* = (p /p  - +Q2r’2 + gz’), 
Ell: = (v/QH2)* = D / H ,  

rr = rR, 

P, = rp:/2QcD, 
Ro = c/2Qr2R, T = Q2R4/v2 = R4/D4. 

Detailed measurements of the angles of the dye streaks have shown a variation of 
angle with radius as the dye moves inward and diffuses upward. This variation in angle has 
been found (Faller 1962) to be in good agreement with the theoretical boundary-layer flow 
where the height of the dye was estimated from a simple diffusion theory. 
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The notation is as follows: 

r‘, 8, z‘ 

r ,  z 
u, v, w, p dimensional velocity components and pressure, the dependent 

C< K K P 
P, v, g 
H ,  R 
Q, 
D 
C 

Ro the Rossby number 
Ek the Ekman number 
T the Taylor number 

The equations of motion and of continuity for the steady symmetrical flow of a 
homogeneous fluid may then be written 

right-handed polar co-ordinates 
non-dimensional radial and vertical co-ordinates 

variables. 
the non-dimensional dependent variables 
density, kinematic viscosity, and acceleration of gravity 
depth and radius of the fluid cylinder 
angular rotation speed and the forced volume-rate of flow 
a characteristic horizontal boundary-layer depth 
a characteristic speed of flow 

Ro( UrV, - U2 - V 2  + r2 WU,) - V = ___ P, + V,  + T-*( U, - V,/r), 

Ro( U r v  + r2 W E )  + U = V,  + T-*(V, - q / r ) ,  
Ro( UrW, + r2WW,) = T*P, + W,, + T-fr(W, + K / r ) ,  

U, + r?E = 0. 

(1) 

(2) 

(3) 

(4) 

Boundary conditions for the problem without vertical walls are: 

at z = 0, 

a t  z = H / D ,  

P = U = 0, no slip at the bottom, 

V ,  = V,  = 0, no stress on the free surface, 

and Udz = - &, constant radial volume flux. s:”” 
For H % D the solution of the underlined equations is the Ekman solution 

V = l-e-”cosz, U = -ee-“sinz, P, = 1. 

It should be noted that the functions U, and P are independent of radius. 
However, the dimensional velocity components are inversely proportional to 
radius and are given by 

u = - (fJ/nr’D) (e+’ID sin x’/D), w = (S/nr’D) (1 - e-Z’’D cos z’/D). 

In  an unpublished report (Faller 1962) it has been shown that by means of a 
power-series expansion of the dependent variables in Ro equations (1)-(4) may 
be systematically reduced to the ordered equations 

ROO: ~zzz(0)  + 4V(O) = 4P,(O), 
Ro’: 
Ro’ 

V,,zs(l) + 4V( 1) = 4P,(1) - K,(O)’ - 4V(0)2, 

Q,,( 2 )  + 4 V (  2) = 4P,( 2) - ZED( 0) V,,( 1) - 8 V (  0) V (  1 ) . 
These and the higher-order equations may be derived from the equation 

V,,7,+4V = 4P,-RO(V2,+4V2), 
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where use has been made of the fact that the radial derivatives of the basic 
equations vanish at each order as a result of the expansion in Ro. This is because 
the zero-order solution and the boundary conditions are independent of r .  
For large z the solution to second order in Ro is 

U = 0, V = 1-&Ro+#Ro2+ .... 

This theoretical solution will be compared with observations as one method by 
which the critical Reynolds number for transition from laminar flow has been 
determined. 

Prior to discussion of the experimental data it is convenient to present the 
rationale for the selection of a set of non-dimensional parameters which appear 
to be of physical significance for the interpretation of the data. Ageneral observa- 
tJion was that in each experiment the instability occurred within a critical radius 
ri. This radius should be a function of the independent parameters alone, as 
expressed by the relation r: = f (S ,  Q, v, a). With two basic dimensions, length 
and time, and with five variables three non-dimensional numbers may be formu- 
lated (for example, see Bridgman 1931) and these have been selected as follows. 
If the instability occurs primarily in the boundary layer one should perhaps 
expect the onset of instability to occur at a critical value of a Reynolds number 
given by Re = vD/v. Using the zero-order solution for the tangential flow at 
large z, v = X/nr'D, we define a Reynolds number in terms of the independent 
parameters alone as Re = 8/nr fv .  It follows that with any observed rl. and values 
of X and v there is a corresponding critical Reynolds number, Re, = s1nrI.v 
below which (r' > rl,) we observe laminar flow and above which (r' < r:) the flow 
is not laminar. Since the circulation and the character of the boundary-layer 
flow have been found to be functions of Ro we select Roc as a second non-dimen- 
sional number, where Roc is the Rossby number evaluated at rl,. The third inde- 
pendent number must contain H and we choose Ek, the Ekman number, which 
is the ratio of the depth of the boundary layer to the total depth of fluid. There- 
fore, arelation of the form Re, = f' (Ro,, Ek) should apply apart from uncontrolled 
environmental conditions and within the limits of observational accuracy 
Similarly, the wavelength a t  instability should be expressible as 

The natural dimension to which 1, might be related is D,  and a relation of the 
form 

1,lD = g'(Roc, Ek) 

might be expected to be a useful one. 
The above relations should be particularly simple and useful if the instability 

is primarily of a boundary-layer character. Anticipating the discussion of the 
observational data the results may be summarized by saying that: (1) no signi- 
ficant relation has been found involving Ek, and (2) after consideration of and 
correction for certain systematic errors 1,lD appears to be constant within experi- 
mental error, and the dependence of Re, upon Roc is small. 
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4. The experimental data 
The observed circulation 

Figure 5 contains 3 profiles of the observed zonal circulation as a function of 
radius where the ordinate is the observed non-dimensional circulation, 
C,, = r'v/QR2. Values of v were determined from v = 8Qr'/@, where 8/@ is 
the ratio of the relative angular displacement of the fluid 8 to the absolute dis- 
placement of the tank 0 as determined from a sequence of instantaneous photo- 
graphs. Included in figure 5 are the theoretical zero-order and second-order 

0.14 1 1 1 

0.11 

N - 0.10 

I1 - 0.09 
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0, 
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radius of instability 

Apparent radius of adjustment 
I 
I 

radius, r = r'/R 

FIGURE 5. Comparison of observed circulations with theory. x , Region of 
adjustment ; , balanced laminar flow; 0 ,  waves or turbulence. 
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circulations Ct(0) and C,(2), and the plotted points are the observed values. Arrows 
rc indicate the radii at which the instability was observed to occur by means 
of the dye tracer in the boundary layer. 

In  each case three regions of flow may be distinguished: ( 1 )  a region of lateral 
boundary-layer adjustment extending from the outer rim to radius r, where 
departures from the theory became very small; (2) a region of balanced laminar 
flow which had values of circulation close to those predicted by the theory; 
(3) a region beginning near re where the circulation departed from the theory. 
Because the second-order solution is not reliable for large R o ,  as indicated by the 
dashed portions of 4 ( 2 )  the inference that the systematic departures from the 
theory are due to the instability must be supported by further analysis of the 
data. 

Individual observations of the zonal flow from all suitable? experiments with 
circulation data have been combined by expressing them in terms of the non- 
dimensional normalized circulation which is defined by V,, = (O/@) 1/2Ro.  
V,, would have the value unity if an observed value of circulation were exactly 
equal to the zero-order solution, Departures of the observations from the theory 
are defined by 

A V  = V(2)+Vw- 

where V, is a small correction to the theory to account for wind stress (see 
Appendix). Figure 6 is a plot of all values of A V  in the laminar regions (solid 
circles) and all data with Ro < 0-250 from the turbulent regions (open circles). 
The division between laminar and turbulent data was based upon the visual 
observations of the critical radii. Horizontal single and double bars indicate 
average values of A V  in 10 unit intervals of R e  for the laminar and turbulent data 
respectively . 

Since R e  and Ro are fairly well correlated for these data a partial correlation 
analysis was made to determine the degree to  which A V was independently related 
to Ro and Re .  A significant dependence of A V  upon R o  would suggest a failure 
of the second-order theory to represent correctly the basic circulation. Using the 
subscripts 1, 2 and 3 to represent AV,  R e  and R o ,  respectively, the correlation 
coefficients were found to be 

r12 = +0.627, r13 = +0.321, r23 = f0.505; r12.3 = +0.569, r13.2 = f0.001, 

where the third subscripts in the latter two (partial) correlations represent those 
variables which were held effectively constant by the partial correlation method 
(for example, see Hoe1 1947). The last figure, which denotes the correlation of 
A V  with R o  while R e  wtls held effectively constant, clearly indicates that the 
systematic departure of A V  from 0 was related independently only to R e .  
The lack of a significant partial correla-tion with Ro supports the theory as a 
valid representation of the basic unperturbed circulation. The line of linear 
regression of A V  upon R e  is given by 

AV-0.0224 = 0.606 x lOP3(Re- 173), ( 5 )  

t I n  some experiments the region of adjustment near the rim extended too far inward 
and overlapped the turbulent region to  the extent that one could not be certain of the 
significance of the observed circulation. 
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and the intersection of this line with A V  = 0 gives a first estimate of the critical 
Reynolds number, Re, = 136. 

Because the circulation data was classified into laminar and turbulent sets 
on the basis of the visual estimates of rc from the bands of dye, the intersection 
Re, = 136 is not entirely independent of the visual observations. This possible 
bias was eliminated in a computation with omission of data in the range 
150 > R e  > 120. The slope in (5) was changed to 0.528 x 10-3 and the intersection 
of the lines in the laminar and turbulent regions gave the estimate Re, = 126. 
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FIGURE 6. Departures of the normalized observed circulation from the second-order 
theory as a function of Reynolds number. Horizontal single and double bars indicate 
average values of AT' for ten-unit intervals of Re in the laminar and turbulent regions, 
respectively. Laminar flow; 0 ,  waves or turbulence. 

The difference between these two values is some measure of the uncertainty in 
the value of Re, computed from the circulation data. The scatter of points from 
a constant value in the laminar region and from the regression line in the turbu- 
lent region may appear to be large in figure 6. However, the standard deviation 
of A V in the laminar region is only 1.0 % of the total circulation. This spread is 
readily explicable in terms of errors of observation of the angle 15' which was 
independently estimated to have errors with a standard deviation of approxi- 
mately 1 yo. In the turbulent region the correlation explains 39 yo of the variance 
of A V  leaving an unexplained spread from the regression line with a standard 
deviation of 0-016, or 1.6% of V(2). These considerations indicate that in the 
absence of observational errors the correlation between A V  and Re for this range 
of Re  could be expected to approach unity. 

n 
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From the three examples of figure 5 it may be seen that the width of the bound- 
ary zone of adjustmefit near the outer rim increases with circulation and is 
significantly wider than would be estimated by laminar boundary-layer theory. 
Estimates from a boundary-layer analysis indicate vertical boundary-layer 
widths of approximately 1 to 2cm. But with such narrow boundary layers 
at the outer rim the critical vdue for centrifugal instability would be far exceeded. 
The observed wide zones of adjustment near the outer rim are believed to be 
primarily a consequence of centrifugal instability for two reasons: (1) the observed 
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FIGURE 7. Dependence of the critical Reynolds number upon Rossby number 
at the observed critical radius. 

shears were close to the values required for stability; and ( 2 )  near the inner rim 
at r = 0.27 (where the shear was in the centrifugally stable sense) the widths of 
the vertical boundary layers were observed to be of the order of 1 to 2cm, in 
agreement with laminar boundary-layer theory. 

The observed instability 

Observations of the average radius at which the bands of dye appeared to originate 
are recorded for each experiment in table 1 as r,, the critical radius. In  cases 
where rc appeared to vary with longitude the maximum radius at which the 
bands were clearly observable was selected, and the estimated standard devia- 
tion of error in rc is 0.01. In  figure 7, Re, is plotted as a function of Roc where 
each of these numbers is computed a t  r,. Experiments in which the instability 
occurred within the boundary zone of adjustment near the rim have been omitted. 
Thereported data are basedupon the analysis of photographs of which the illumi- 
nation, film exposure and development were constant, so that the photographic 
data are considered to  form a reasonably homogeneous set. The linear correlation 
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of Re, with Roc is 0.90 leaving an unexplained variance in Re, of 19%. Thus the 
scatter of point,s from a straight line in figure 7 is largely explicable in terms of 
errors of observation of r,, since a standard deviation of error in r, of 0.01 would 
explain 12 yo of the variance of Re,. 

Extrapolation of the linear regression line to Roc = 0 (zero curvature) gives 
the estimate Re, = 133 for linear Ekman flow. Systematic observational errors 
associated with the necessity of finite amplitude waves for the detection of the 

V ,  (normal component of flow) 

FIGURE S. Boundary-layer components normal to the direction a t  angle E with the tangential 
direction. (a )  Ekman boundary-layer profiles (Ro = 0). (b )  Rotating-disk boundary- 
layer profiles. 

instability have been considered in detail in an unpublished report (Faller 1962). 
By means of an assumed model of the character of the perturbations, and con- 
sideration of the minimum amplitude perturbation detectable with the dye, it 
has been determined that Re, at Roc = 0 is overestimated by approximately 
9 2 5 .  This correction reduces the value of Re, at Roc = 0 to 124 k 5. Furthermore, 
it  is probable that the slope of the regression line in figure 7 should be reduced 
somewhat, but the magnitude of this latter correction is quite uncertain. 

Considering the two independent estimates of Re,, from the circulation data 
and from the direct observations of rc, it would appear that the true value lies 
in the range 120 < Re, < 130. It is difficult to assess the relative merits of the 
two methods aiid each has an uncertainty of approximately f 5 .  Therefore, 
the value Re, = 125 & 5 is taken as the most reasonable estimate from the 
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available data of the critical Reynolds number for the laminar Ekman boundary 
layer. 

Some mention should be made of the frequent occurrence of other types of 
banded structure which, when present, usually obscured the bands which 
have been described. These were characterized by a larger spacing and by a 
zero angle with respect to the zonal direction or by an angle opposite to that of 
the smaller bands. These bands are well represented in figure 4 (plate 4d)  where 
they all but obscure the smaller waves, and they may also be seen in figure 4 (plate 
3 a )  between the radii 6 and 7. Frequently they seemed to grow out of the smaller 
bands and at times they occurred a t  a radius greater than was expected for 
instability, sometimes extending to the rim. But in any given experiment it was 
difficult to assign a specific radius of formation and they appeared to have no 
relation to the non-dimensional parameters of the problem. It is felt that in 
most cases these larger banded forms were related t o  mechanical disturbances 
or to irregular boundary conditions, but the possibility of another form of 
instability of the laminar flow cannot be discounted. 

Band spucings and angles 
On the one hand, one might expect that the angles of the bands would be inde- 
pendent ofradiusand, therefore, that thebandswouldspiralinward as equiangular 
spirals. On the other hand, one might reason that the band spacing should remain 
constant and proportional to D. It has been found from photographs that in some 
cases the spacing did at first decrease with decreasing radius (following the 
equiangular hypothesis) but at smaller radii the waves began to  readjust by 
folding into one another with a reduction of angle thus maintaining ail approxi- 
mately constant spacing (see figure 4, plate 3a). 

The observed average spacing for each experiment I,, measured as close to 
re as was possible, and the average angle 3 with respect to the tangential direction 
are presented in table 1. Because of the proportional dependence of 1, upon radius 
for equiangular spirals the non-dimensional values were adjusted by the factor 
rc/. to give L = (&/D)(rc/F) where F is the mean radius at which the spacings 
were measured. Thus L represents an estimate of the non-dimensional wavelength 
corrected to the observed critical radius. These values L show no significant de- 
pendenceuponRo,oruponEkandhaveanaveragefor allexperiments ofL = 10.9. 
The frequency distribution of observation of angle a for 188 observations from 
23 experiments gave the average angle Z = 14.5 degrees with the standard devia- 
tion ca = 2.0 degrees. This distribution may be non-representative because 
some subjectivity was necessary for the selection of bands sufficiently well 
formed to measure. The average angles for each experiment (table 1) show real 
differences from one experiment to another and have a linear correlation with 
Roc of + 0.52, but again systematic errors of observation cannot be discounted 
as a possible source of the apparent relationship. 

Band motions 
Motion pictures of the bands clearly show that in all cases observed the bands 
had a component of motion normal to their axes, radially inward. Before 
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presentation of the analysis of the band motions it is necessary to discuss briefly 
some of the results of Stuart’s theoretical analysis (GSW) of the instability of the 
flow over a rotating disk. Stuart demonstrated theoretically the possible existence 
of unstable modes at infinite Reynolds number in the form of roll vortices. 
In  particular he discussed a. class of modes stationary with respect to the rotating 
disk, inasmuch as stationary streaks were directly observed on the disk by the 

V,, (theoretical) 

FIGURE 9. Observed speeds of bands (normal to their axes) compared with theoretical 
normal speeds. The V,, (theoretical) are based upon observed angles (upper figures) and 
boundary-layer profiles for the specifled values of Ro (lower figures). 

china-clay technique. From Stuart’s theory the orientation of a stationary 
mode was deduced to be along that direction for which the profile of the normal 
component of the boundary-layer flow Y,vs height had an inflexion point coinci- 
dent in height with a zero value of the normal flow. A physical interpretation of 
this criterion is that the instability is associated with the inflexion point of such a, 
profile, and that if a perturbation of infinitesimal amplitude exists and is station- 
a.ry its angle must be such that there is no a.dvective normal component of flow 
at the level of the centre of the vortex tube. Figure 8 illustrates the graphical 
determination of that angle for the two boundary layers under discussion. 
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Corresponding to any angle e one plots the normal component of flow vs 
height, and for each E there exists a first inflexion point I .  The angle for which 
this inflexion point coincides with V,  = 0 is 13.3 degrees for the rotating disk 
flow and 16.0 degrees for the Ekman spiral. It is noteworthy that the observed 
stationary angle on the rotating disk was approximately 14 degrees which fact 
tends to confirm Stuart’s theory. 

By extension of the above argument concerning the angle required for station- 
ary modes we may hypothesize that bands formed a t  some other angle and a t  
the inflexion point associated with that angle should have an advective normal 
component of motion. Por example, from the Ekman profiles of figure 8 bands 
with an angle of 5 degrees would have the ‘theoretical ’ normal speed V,  = - 0.14 
at the height of the inflexion point I .  Band angles and the corresponding speeds 
of motion were evaluated for some 8 cases for which motion pictures were 
available, and the observed normal speeds vs the theoretical speeds are 
presented in figure 9. For determination of the theoretical values the slightly 
different second-order boundary-layer profiles corresponding to the observed 
values of Ro were used in place of the curves of figure 8. Numbers beside each 
observation point of figure 9 indicate the observed average angles and the Rossby 
numbers at the average radii of observation of each group of bands. The agree- 
ment between observed and predicted speeds tends to support the general 
argument that the instability is associated with the inflexion point of the com- 
ponent of flow normal to the bands. 

5. Concluding remarks 
These studies have established a critical Reynolds number for the instability 

of the laminar Ekman boundary layer and several characteristics of the unstable 
waves, including their wavelengths, angles, speeds of propagation, and the 
effect of the boundary-layer instability upon the basic tangential circulation. 
Some of the results are based upon limited data and therefore require corrobora- 
tion by further experimental studies. Unfortunately, because of damage from 
high water, salt, seaweed, and sand as a result of a hurricane in the fall of 1960 
the apparatus was unsuitable for further experimental work and has been 
dismantled. Consequently, there is no possibility of obtaining further data with 
the same apparatus. To obtain unstable flow a t  low Rossby numbers, as was the 
primary goal of this study, comparably large experimental apparatus or a 
much higher rotation rate is required, as may be deduced from the definitions 
of Re and Ro. 

Some interesting differences from corresponding data of the rotating disk 
experiments should be emphasized. The value Re, = 125 & 5 for the Ekman flow 
is substantially different from the corresponding value defined in the same way 
for the rotating disk, namely Re, = 436. Without an adequate theory to explain 
either value one may speculate on the significance of obvious differences in the 
two boundary-layer profiles, the most conspicuous difference being the stronger 
radial component in the Ekman flow (see figure 8 for e = 0 deg.). The ratio 
of vertical shears of the normal components of flow at the inflexion points 
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corresponding to the stationary angles for the two cases is approximately 2-2, and 
this difference in shears is perhaps the major contribution to the large ratio of 
observed critical Reynolds numbers. Furthermore, in the rotating disk case there 
is a normal flow into the boundary layer (due to the net lateral divergence in the 
boundary layer) which may tend to stabilize the flow. 

The spacing of the streaks on the rotating disk has been found from the 
data of GSW to be 21.50  compared to 5 . 5 0  predicted by Stuart’s analysis and 
compared to 10.90 found here for the Ekman instability. Stuart tentatively 
ascribed the factor of 4 difference to the omission of viscosity in the instability 
theory, but i t  is noteworthy that the value found for the Ekman flow is very 
close to the integral fa,ctor 2 times Stuart’s theoretical value. This apparent 
quantization may be incidental or may represent a tendency for the viscous 
coupling between the boundary and the perturbation to produce subharmonics 
of the preferred inviscid mode. 
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Appendix 
Because of the basic rotation of the tank with respect to the air at rest in the 

laboratory there is a stress on the free surface of the water which may be deter- 
mined in theory from the classical analysis of the flow over a rotating disk (for 
example, see Schlichting 1960). It may be shown that for slow flow within the 
rotating tank the tangential wind stress on the water is equal at each radius to 
the stress of the wind-induced flow on the tank. This balance leads directly to 
the equation for the wind induced flow 

Uw = (P,/Pw) (%/%J& QrG’(0h 

where subscripts a and w refer to the physical properties of air and water, vw 
is the resultant wind-induced zonal flow, and G’(0) = -0.616 is the non- 
dimensional vertical shear of the tangential component of the air flow evaluated 
at the surface of a rotating disk. The non-dimensional wind-induced circulation 
as a function of r is C,(r) = C,(R) r2, where C,(R) = 0.0027 is virtually constant 
for all experiments. This result has been confirmed experimentally, and the 
dashed lines in figure 5 indicate the amount subtracted from the zero-order 
circulations to account for the wind stress. The corresponding normalized wind- 
induced circulation is given by 

V, = CFV(R)l2Ro. 
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